USING PG ELEMENTS FOR SOLVING FREDHOLM INTEGRO-DIFFERENTIAL EQUATIONS

author

  • Majid Karami South Tehran Branch, Islamic Azad university Iran, Islamic Republic of
Abstract:

In this paper, we use Petrov-Galerkin elements such as continuous and discontinuous Lagrange-type k-0 elements and Hermite-type 3-1 elements to find an approximate solution for linear Fredholm integro-differential equations on $[0,1]$. Also we show the efficiency of this method by some numerical examples  

Upgrade to premium to download articles

Sign up to access the full text

Already have an account?login

similar resources

using pg elements for solving fredholm integro-differential equations

in this paper, we use petrov-galerkin elements such as continuous and discontinuous lagrange-type k-0 elements and hermite-type 3-1 elements to find an approximate solution for linear fredholm integro-differential equations on $[0,1]$. also we show the efficiency of this method by some numerical examples

full text

Solving Non-linear Fredholm Integro-differential Equations

In this paper, Semi-orthogonal (SO) B-spline scaling functions and wavelets and their dual functions are presented to approximate the solutions of linear and non-linear second order Fredholm integro-differential equations. The B-spline scaling functions and wavelets, their properties and the operational matrices of derivative for this functions are presented to reduce the solution of linear and...

full text

A new technique for solving Fredholm integro-differential equations using the reproducing kernel method

This paper is concerned with a technique for solving Fredholm integro-dierentialequations in the reproducing kernel Hilbert space. In contrast with the conventionalreproducing kernel method, the Gram-Schmidt process is omitted hereand satisfactory results are obtained. The analytical solution is represented inthe form of series. An iterative method is given to obtain the approximate solution.Th...

full text

Discrete Collocation Method for Solving Fredholm–Volterra Integro–Differential Equations

In this article we use discrete collocation method for solving Fredholm–Volterra integro– differential equations, because these kinds of integral equations are used in applied sciences and engineering such as models of epidemic diffusion, population dynamics, reaction–diffusion in small cells. Also the above integral equations with convolution kernel will be solved by discrete collocation metho...

full text

Usage of the Variational Iteration Technique for Solving Fredholm Integro-Differential Equations

Integral and integro-differential equations are one of the most useful mathematical tools in both pure and applied mathematics. In this article, we present a variational iteration method for solving Fredholm integro-differential equations. This study provides an analytical approximation to determine the behavior of the solution. To show the efficiency of the present method for our proble...

full text

The combined reproducing kernel method and Taylor series for solving nonlinear Volterra-Fredholm integro-differential equations

In this letter, the numerical scheme of nonlinear Volterra-Fredholm integro-differential equations is proposed in a reproducing kernel Hilbert space (RKHS). The method is constructed based on the reproducing kernel properties in which the initial condition of the problem is satised. The nonlinear terms are replaced by its Taylor series. In this technique, the nonlinear Volterra-Fredholm integro...

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


Journal title

volume 4  issue 4 (FALL)

pages  331- 339

publication date 2014-03-21

By following a journal you will be notified via email when a new issue of this journal is published.

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023